Existence results for hybrid fractional differential equations with Hilfer fractional derivative

Authors

  • D. Vivek Department of Mathematics , Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641020, India.
  • k Kanagarajan Department of Mathematics \ Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641020, India.
  • O. Baghani Department of Mathematics and Computer Sciences, Hakim Sabzevari University of Sabzevar, Sabzevar, Iran.
Abstract:

This paper investigates the solvability, existence and uniqueness of solutions for a class of nonlinear fractional hybrid differential equations with Hilfer fractional derivative in a weighted normed space. The main result is proved by means of a fixed point theorem due to Dhage. An example to illustrate the results is included.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative

The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...

full text

Existence and continuous dependence for fractional neutral functional differential equations

In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.

full text

Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...

full text

Existence of solutions for nonlinear singular fractional differential equations with fractional derivative condition

*Correspondence: [email protected] Department of Mathematics, Jining University, Jining, Shandong 273155, P.R. China Abstract In this paper, we investigate a boundary value problem for singular fractional differential equations with a fractional derivative condition. The existence and uniqueness of solutions are obtained by means of the fixed point theorem. Some examples are presented to illustr...

full text

Non-existence of Global Solutions for a Differential Equation Involving Hilfer Fractional Derivative

We consider a basic fractional differential inequality with a fractional derivative named after Hilfer and a polynomial source. A non-existence of global solutions result is proved in an appropriate space and the critical exponent is shown to be optimal.

full text

Theory of Hybrid Fractional Differential Equations with Complex Order

We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 2

pages  294- 304

publication date 2020-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023